40823145-cd2021

  • Home
    • Site Map
    • reveal
    • blog
  • About
  • Copperation
  • Midterm
    • Week 1
      • Create New repository and Wecsite
    • Week 2
    • Week 3
      • upgrade cmsimde
  • Stage1-ag1
  • stage2-ag1
  • stage3-ag1
    • Task1
    • Task2
    • W13
    • W14
      • MTB_Robot
      • gitlab
    • W15
    • W16
  • Final
  • Note
    • Upgrade pip
    • ssh
    • Leo Editor
      • Blog
      • Reveal
    • Code
  • FreeCAD protable
Task2 << Previous Next >> W14

W13

為因應校方公告:

「嚴重特殊傳染性肺炎」疫情課程彈性處理事項_遠距教學公告_0515D(中英版本).pdf

5月17日至5月30日全校所有課程改採遠距教學.

本課程將在 W13-W14 週採取同步線上模式上課, 請所有修課學員密切注意 https://gitter.im/mdecourse/cd2021 上之公告, 線上同步上課將採 OBS + Youtube 配合 https://meet.google.com 直播方式進行, 請各學員屆時必須事先登入 github 帳號與 @gm 電子郵箱帳號, 以便在課程直播網站上留言討論.

同步直播課程進行過程將指定各組員針對課程內容進行直播操作, 負責直播學員必須即時將直播網址公布於 https://gitter.im/mdecourse/cd2021, 以便與其他學員及老師進行互動.

課程同步直播時段將與上課時段相同, 每段直播中間的暫停時間將視實際情況決定.

本週小組同步直播

RoboDK:

1.開啟start.bat

2.開啟可攜版robodk:E:\robodk522_portable\bin\RoboDK.exe

3.robodk開啟檔案選取:E:\robodk522_portable\examples\pick_and_place\pick_and_place_with_python.rdk

4開啟SciTE並將下方路徑檔案放入E:\robodk522_portable\examples\pick_and_place\pick_and_place.py
點選Tools-->GO

# KMOLab Portable RoboDK pick and place
from robolink import *    # API to communicate with robodk
from robodk import *      # robodk robotics toolbox
 
# Setup global parameters
BALL_DIAMETER = 100 # diameter of one ball
APPROACH = 100      # approach distance to grab each part, in mm
nTCPs = 6           # number of TCP's in the tool
 
#----------------------------------------------
# Function definitions
 
def box_calc(BALLS_SIDE=4, BALLS_MAX=None):
    """Calculate a list of points (ball center) as if the balls were stored in a box"""
    if BALLS_MAX is None: BALLS_MAX = BALLS_SIDE**3
    xyz_list = []
    for h in range(BALLS_SIDE):
        for i in range(BALLS_SIDE):
            for j in range(BALLS_SIDE):
                xyz_list = xyz_list + [[(i+0.5)*BALL_DIAMETER, (j+0.5)*BALL_DIAMETER, (h+0.5)*BALL_DIAMETER]]
                if len(xyz_list) >= BALLS_MAX:
                    return xyz_list
    return xyz_list
 
def pyramid_calc(BALLS_SIDE=4):
    """Calculate a list of points (ball center) as if the balls were place in a pyramid"""
    #the number of balls can be calculated as: int(BALLS_SIDE*(BALLS_SIDE+1)*(2*BALLS_SIDE+1)/6)
    BALL_DIAMETER = 100
    xyz_list = []
    sqrt2 = 2**(0.5)
    for h in range(BALLS_SIDE):
        for i in range(BALLS_SIDE-h):
            for j in range(BALLS_SIDE-h):
                height = h*BALL_DIAMETER/sqrt2 + BALL_DIAMETER/2
                xyz_list = xyz_list + [[i*BALL_DIAMETER + (h+1)*BALL_DIAMETER*0.5, j*BALL_DIAMETER + (h+1)*BALL_DIAMETER*0.5, height]]
    return xyz_list
 
def balls_setup(frame, positions):
    """Place a list of balls in a reference frame. The reference object (ball) must have been previously copied to the clipboard."""
    nballs = len(positions)
    step = 1.0/(nballs - 1)
    for i in range(nballs):
        newball = frame.Paste()
        newball.setName('ball ' + str(i)) #set item name
        newball.setPose(transl(positions[i])) #set item position with respect to parent
        newball.setVisible(True, False) #make item visible but hide the reference frame
        newball.Recolor([1-step*i, step*i, 0.2, 1]) #set RGBA color
 
def cleanup_balls(parentnodes):
    """Delete all child items whose name starts with \"ball\", from the provided list of parent items."""
    todelete = []
    for item in parentnodes:
        todelete = todelete + item.Childs()
 
    for item in todelete:
        if item.Name().startswith('ball'):
            item.Delete()
 
def TCP_On(toolitem, tcp_id):
    """Attach the closest object to the toolitem Htool pose,
    furthermore, it will output appropriate function calls on the generated robot program (call to TCP_On)"""
    toolitem.AttachClosest()
    toolitem.RDK().RunMessage('Set air valve %i on' % (tcp_id+1))
    toolitem.RDK().RunProgram('TCP_On(%i)' % (tcp_id+1));
         
def TCP_Off(toolitem, tcp_id, itemleave=0):
    """Detaches the closest object attached to the toolitem Htool pose,
    furthermore, it will output appropriate function calls on the generated robot program (call to TCP_Off)"""
    toolitem.DetachAll(itemleave)
    toolitem.RDK().RunMessage('Set air valve %i off' % (tcp_id+1))
    toolitem.RDK().RunProgram('TCP_Off(%i)' % (tcp_id+1));
 
 
#----------------------------------------------------------
# The program starts here:
 
# Any interaction with RoboDK must be done through RDK:
RDK = Robolink()
 
# Turn off automatic rendering (faster)
RDK.Render(False)
 
#RDK.Set_Simulation_Speed(500); # set the simulation speed
 
# Gather required items from the station tree
robot = RDK.Item('Fanuc M-710iC/50')
robot_tools = robot.Childs()
#robottool = RDK.Item('MainTool')
frame1 = RDK.Item('Table 1')
frame2 = RDK.Item('Table 2')
 
# Copy a ball as an object (same as CTRL+C)
ballref = RDK.Item('reference ball')
ballref.Copy()
 
# Run a pre-defined station program (in RoboDK) to replace the two tables
prog_reset = RDK.Item('Replace objects')
prog_reset.RunProgram()
 
# Call custom procedure to remove old objects
cleanup_balls([frame1, frame2])
 
# Make a list of positions to place the objects
frame1_list = pyramid_calc(4)
frame2_list = pyramid_calc(4)
 
# Programmatically place the objects with a custom-made procedure
balls_setup(frame1, frame1_list)
 
# Delete previously generated tools
for tool in robot_tools:
    if tool.Name().startswith('TCP'):
        tool.Delete()
         
# Calculate tool frames for the suction cup tool of 6 suction cups
TCP_list = []
for i in range(nTCPs):
    TCPi_pose = transl(0,0,100)*rotz((360/nTCPs)*i*pi/180)*transl(125,0,0)*roty(pi/2)
    TCPi = robot.AddTool(TCPi_pose, 'TCP %i' % (i+1))
    TCP_list.append(TCPi)
 
TCP_0 = TCP_list[0]
 
# Turn on automatic rendering
RDK.Render(True)
 
# Move balls    
robot.setPoseTool(TCP_list[0])
nballs_frame1 = len(frame1_list)
nballs_frame2 = len(frame2_list)
idTake = nballs_frame1 - 1
idLeave = 0
idTCP = 0
target_app_frame = transl(2*BALL_DIAMETER, 2*BALL_DIAMETER, 4*BALL_DIAMETER)*roty(pi)*transl(0,0,-APPROACH)
 
while idTake >= 0:
    # ------------------------------------------------------------------
    # first priority: grab as many balls as possible
    # the tool is empty at this point, so take as many balls as possible (up to a maximum of 6 -> nTCPs)
    ntake = min(nTCPs, idTake + 1)
 
    # approach to frame 1
    robot.setPoseFrame(frame1)
    robot.setPoseTool(TCP_0)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.MoveJ(target_app_frame)
 
    # grab ntake balls from frame 1
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        # calculate target wrt frame1: rotation about Y is needed since Z and X axis are inverted
        target = transl(frame1_list[idTake])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idTake = idTake - 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_On(TCPi, i)
        robot.MoveL(target_app)
  
    # ------------------------------------------------------------------
    # second priority: unload the tool     
    # approach to frame 2 and place the tool balls into table 2
    robot.setPoseTool(TCP_0)
    robot.MoveJ(target_app_frame)
    robot.MoveJ([0,0,0,0,10,-200])
    robot.setPoseFrame(frame2)    
    robot.MoveJ(target_app_frame)
    for i in range(ntake):
        TCPi = TCP_list[i]
        robot.setPoseTool(TCPi)
        if idLeave > nballs_frame2-1:
            raise Exception("No room left to place objects in Table 2")
         
        # calculate target wrt frame1: rotation of 180 about Y is needed since Z and X axis are inverted
        target = transl(frame2_list[idLeave])*roty(pi)*rotx(30*pi/180)
        target_app = target*transl(0,0,-APPROACH)
        idLeave = idLeave + 1       
        robot.MoveL(target_app)
        robot.MoveL(target)
        TCP_Off(TCPi, i, frame2)
        robot.MoveL(target_app)
 
    robot.MoveJ(target_app_frame)
 
# Move home when the robot finishes
robot.MoveJ([0,0,0,0,10,-200])

Task2 << Previous Next >> W14

Copyright © All rights reserved | This template is made with by Colorlib